
	

Continue

https://feedproxy.google.com/~r/Uplcv/~3/YTWXjIUwRh0/uplcv?utm_term=multiple+grep+command+in+linux

Multiple	grep	command	in	linux

The	grep	command	is	one	of	the	oldest	tools	for	Linux	and	other	platforms.	Actually,	it	is	older	than	Linux	itself.	It	was	written	by	Ken	Thompson	more	than	45	years	ago!	The	name	grep	stands	for	“globally	regular	expression	print”.	This	name	comes	from	its	predecessor	ed	and	the	specific	mode	in	which	you	would	globally	search,	using	a	regular
expression,	and	print	the	output.	The	related	command	was	“g/re/p”.	For	more	history,	have	a	look	at	the	Wikipedia	entry.	Otherwise,	let’s	dive	into	the	tool	and	get	to	know	some	practical	grep	examples	for	daily	usage.Grep	by	exampleIntroductionOne	of	the	reasons	to	create	this	blog	post	is	that	there	are	a	lot	of	examples	available	for	the	grep
command.	But	with	all	information	scattered,	most	people	don’t	take	the	time	to	really	learn	the	most	basic	commands.	We	want	to	leverage	the	full	potential	of	the	grep	command,	as	it	can	be	used	in	many	work-related	or	personal	related	activities.	It	is	common	to	use	it	for	checking	configuration	files	and	searching	through	log	files.Why	learn	the
grep	command	and	regular	expressions?As	with	every	tool,	it	is	often	easy	to	start	using	it,	but	hard	to	really	master	it.	The	man	page	is	very	extensive,	so	is	the	online	help	documentation.	Although	these	sources	are	a	great	reference,	we	will	be	showing	the	grep	command	by	example.	And	we	will	include	specific	use-cases	which	are	common	for
system	administrators	and	security	professionals.	Especially	if	you	have	to	deal	often	with	data,	investing	some	time	in	doing	things	efficiently	will	pay	off.Before	you	continueIf	you	are	using	grep	on	another	platform	than	Linux,	you	may	not	have	the	GNU	version	of	grep.	Some	things	in	this	guide	may	not	be	working,	or	need	specific	tailoring.	You
can	easily	find	out	what	version	you	have	with	grep	--version.Need	a	particular	job	to	be	done	with	the	grep	command	and	can’t	get	it	to	work?	Use	the	comments	and	share	what	you	have	tried.	Let’s	start	with	the	basics	and	become	a	‘grep	master’.Basic	usage	examples	of	grepUse	grep	for	simple	actionsThe	grep	utility	does	not	need	much	to	starts
doing	its	work.	The	syntax	of	grep	consists	of	four	parts.grep	commandoptional:	option(s)string	to	searchfile,	files,	or	path	to	be	searchedThe	options	that	grep	uses	typically	have	a	long	and	short	format.	The	long	format	has	two	dashes,	followed	by	a	word	or	words.	Use	the	long	format	when	using	them	in	scripts,	so	that	it	becomes	obvious	what	the
grep	command	is	doing.	Use	the	short	notation	in	your	daily	tasks	and	on	the	command	line,	to	save	on	typing	and	speed	up	your	work.If	you	would	like	to	find	the	root	user	in	your	/etc/passwd	file,	just	tell	it	to	search	for	‘root’	and	the	file	name	itself.	In	this	case,	no	option	is	needed.grep	root	/etc/passwdThe	output	may	look	something	like	this:Using
colored	grep	outputIf	the	command	above	did	not	show	colored	output	on	your	system,	you	might	want	to	enable	that.	It	can	be	done	with	--color	auto.	As	this	would	mean	you	have	to	type	it	in	each	time,	using	an	alias	would	save	you	from	a	lot	of	typing.alias	grep='grep	--color=auto'You	can	add	this	alias	to	your	.bash_aliases	or	.bashrc	file	if	you	are
using	the	bash	shell.	Otherwise,	add	it	to	the	respective	profile	file.	These	files	can	be	found	in	your	home	directory.Ignore	case	sensitivityNow	that	we	have	performed	a	basic	grep	command,	we	can	start	to	change	its	behavior.	Often	we	already	know	the	word	or	words	we	are	looking	for.	What	we	don’t	always	know	is	if	one	or	more	occurrences	of
the	word	are	using	capitals.	By	default,	the	grep	command	will	be	case-sensitive.	So	only	the	right	match	will	be	displayed.	We	can	tell	grep	to	ignore	case-sensitive	searches	with	the	-ioption.grep	-i	root	/etc/passwdShow	line	numbersDepending	on	your	search,	you	may	have	many	occurrences	of	the	text	you	were	searching	for.	Use	the	-n	option	to
have	grep	show	the	related	line	numbers.grep	-n	root	/etc/passwdExcluding	wordsTo	exclude	particular	words	or	lines,	use	the	–invert-match	option.	Use	grep	-v	as	a	shorter	alternative.	Exclude	multiple	words	with	grep	by	adding	-E	and	use	a	pipe	(|)	to	define	the	specific	words.	Optionally	make	it	case	insensitive	with	the	-i	as	listed	above.grep	-i	-v	-
E	'banana|monkey'	zoo.txtMatch	countingIt	may	be	useful	to	know	the	number	of	occurrences	of	your	specified	word.	This	count	is	displayed	when	using	grep	-c	or	grep	-c	-v	to	show	the	number	of	non-matching	lines.grep	-c	monkey	zoo.txtRecursive	search	through	directories	and	filesTo	search	in	one	directory,	there	are	the	-r	and	-R	options	to
achieve	this.	Depending	on	the	target	and	the	existence	of	symlinks,	you	might	want	to	use	the	first	one	if	you	do	not	want	to	follow	them.	Use	the	capitalized	option,	grep	-R,	if	you	want	to	include	any	possible	symlinked	file	to	be	searched	as	well.	This	may	take	much	longer	and	could	result	in	other	file	systems	to	be	searched	as	well.grep	-r
password	/etcTip:	if	you	don’t	want	the	filenames	in	the	output,	add	the	-h	option.Show	matching	files	onlySometimes	you	just	want	to	see	the	files	that	match	a	particular	text	string.	There	is	the	grep	-l	command	to	do	achieve	this.grep	-l	-R	password	/etcTo	show	all	files	that	do	not	match	your	target,	use	the	capitalized	version:	grep	-L.Using	regular
expressionsThe	grep	utility	is	a	powerful	tool	and	can	use	regular	expressions.	Regular	expressions	can	be	considered	‘logic	rules’	for	matching	text	strings.	Think	of	something	like	“I	know	the	word	should	be	starting	with	the	letter	‘a’,	but	after	that	everything	is	fine”.	By	using	a	regular	expression	we	can	express	this	in	short	notation	(e.g.
"a.*").Match	specific	words	onlyYou	may	be	searching	for	a	very	short,	yet	specific	word.	In	this	case,	grep	will	return	way	too	many	results.	By	using	more	specific	statements	we	can	limit	the	output.grep	"\bbin\b"	/etc/passwdThe	\btells	grep	to	use	word	boundaries.Although	you	could	use	spaces	to	search	for	a	full	word,	that	often	won’t	give	you	the
right	result.	It	will	return	some	hits,	while	it	might	be	missing	a	few	as	well.	For	example,	any	occurrences	at	the	begin	or	end	of	the	file.	There	will	also	be	no	match	if	any	special	characters	are	followed	by	it,	or	even	a	simple	character	like	a	comma.Tip:	the	-woption	does	the	same	as	this	regular	expression	and	is	easier	to	remember.Find	lines
starting	with	a	specific	stringWith	the	carrot	symbol	(^)	we	can	activate	a	regular	expression	that	defines	that	the	line	should	start	with	a	specific	piece	of	text.grep	"^systemd"	/etc/passwdFind	lines	ending	with	a	specific	stringLike	the	carrot	symbol,	we	can	use	the	dollar	sign	($)	to	mark	the	end.	Only	lines	that	match	that,	will	be	returned.	A	great
way	to	find	all	accounts	that	have	a	particular	shell	configured.grep	"bin/bash$"	/etc/passwdSearch	for	multiple	wordsSometimes	you	want	to	match	multiple	words.	By	using	parentheses	you	can	tell	grep	to	search	for	one	word,	or	the	other.	Each	possible	match	is	split	by	a	pipe	sign.grep	-E	"^(backup|root|syslog)"	/etc/passwdMatching	multiple
wordsNote:	use	the	-E	option	to	enable	extended	regular	expressions.	Without	it,	the	command	won’t	give	any	results.Combining	grep	with	other	toolsExit	codeUsing	grep	in	your	shell	scripts	can	be	very	useful.	For	example,	you	can	use	it	to	determine	if	a	particular	file	has	the	right	configuration	setting	and	then	perform	an	action	based	on	that.
Another	one	is	to	see	if	a	particular	user	exists	in	your	/etc/passwd	file.grep	-q	michael	/etc/passwdGrep	will	not	display	anything,	but	end	with	an	exit	code.	This	exit	code	will	be	stored	in	a	special	variable	with	the	name	$?.	If	you	want	to	see	it	on	the	command	line,	use	it	with	echo.echo	$?Exit	codes:0	=	match	found1	=	no	match	found2	=
errorExample	syntax	to	use	grep	in	your	shell	script:if	$(grep	-q	michael	/etc/passwd);	then	echo	"Michael	is	in	passwd	file";	else	echo	"Michael	is	not	in	passwd	file";	fiUsing	pipesThe	grep	command	is	a	great	utility	to	use	in	combination	and	filter	the	output	of	other	commands.	This	way	the	screen	only	shows	that	data	you	are	interested	in.	To
achieve	this	we	use	the	pipe	sign	(|)	to	tell	the	shell	to	send	any	output	to	the	next	command	in	line.It	is	common	to	apply	multiple	grep	commands	by	piping	them	together.	When	using	big	data	files,	try	to	limit	the	number	of	pipes	to	increase	performance.	You	may	also	want	to	look	for	alternative	solutions	when	you	are	repeating	them
often.Example:	Search	in	dmesg	outputThe	dmesg	command	gives	a	lot	of	lines	as	output.	If	we	are	just	interested	in	information	regarding	our	storage,	we	can	easily	do	by	searching	for	“sd”.dmesg	|	grep	sdIf	we	just	would	like	to	find	AppArmor	related	events,	it	would	make	sense	to	ignore	case	due	to	the	capitals	in	the	name.	By	smart	combining
the	right	tools,	we	can	form	a	powerful	data	filter.dmesg	|	grep	-i	apparmorAdvanced	tipsImprove	search	speed:	fixed	stringsTypically	you	may	be	using	already	a	specific	word	that	you	want	to	be	matched.	When	searching	through	big	files,	grep	may	take	a	while	to	complete	its	task.	By	using	the	-F	(fixed	strings)	option	this	can	be	dramatically
improved.	The	only	downside	is	that	regular	expressions	can	not	be	used.Searching	inside	compressed	data	(avoid	using	gunzip!)Need	to	search	inside	compressed	files?	Use	the	zgrep	utility.	It	has	the	same	syntax	and	it	knows	how	to	deal	with	compressed	data.ConclusionThe	grep	command	is	a	very	powerful	tool	and	easy	to	work	with.	To	truly
master	it,	one	should	be	learning	more	about	regular	expressions.	It	makes	searching	and	finding	the	right	data	much	easier.	Knowledge	about	regular	expressions	will	also	come	in	handy	for	other	tools,	like	sed	and	awk.	If	you	really	want	to	learn	how	to	use	the	grep	command,	use	it	daily	and	create	your	own	list	of	commands	you	often	use.Do	you
have	a	great	one-liner	that	you	often	use	with	grep?	Don’t	keep	it	secret	and	share	it	in	the	comments!	grep,	egrep,	fgrep	-	print	lines	matching	a	pattern	Synopsis	grep	[OPTIONS]	PATTERN	[FILE...]	grep	[OPTIONS]	[-e	PATTERN	|	-f	FILE]	[FILE...]	Description	grep	searches	the	named	input	FILEs	(or	standard	input	if	no	files	are	named,	or	if	a	single
hyphen-minus	(-)	is	given	as	file	name)	for	lines	containing	a	match	to	the	given	PATTERN.	By	default,	grep	prints	the	matching	lines.	In	addition,	two	variant	programs	egrep	and	fgrep	are	available.	egrep	is	the	same	as	grep	-E.	fgrep	is	the	same	as	grep	-F.	Direct	invocation	as	either	egrep	or	fgrep	is	deprecated,	but	is	provided	to	allow	historical
applications	that	rely	on	them	to	run	unmodified.	Options	Generic	Program	Information	--help	Print	a	usage	message	briefly	summarizing	these	command-line	options	and	the	bug-reporting	address,	then	exit.	-V,	--version	Print	the	version	number	of	grep	to	the	standard	output	stream.	This	version	number	should	be	included	in	all	bug	reports	(see
below).	Matcher	Selection	-E,	--extended-regexp	Interpret	PATTERN	as	an	extended	regular	expression	(ERE,	see	below).	(-E	is	specified	by	POSIX	.)	-F,	--fixed-strings	Interpret	PATTERN	as	a	list	of	fixed	strings,	separated	by	newlines,	any	of	which	is	to	be	matched.	(-F	is	specified	by	POSIX	.)	-G,	--basic-regexp	Interpret	PATTERN	as	a	basic	regular
expression	(BRE,	see	below).	This	is	the	default.	-P,	--perl-regexp	Interpret	PATTERN	as	a	Perl	regular	expression.	This	is	highly	experimental	and	grep	-P	may	warn	of	unimplemented	features.	Matching	Control	-e	PATTERN,	--regexp=PATTERN	Use	PATTERN	as	the	pattern.	This	can	be	used	to	specify	multiple	search	patterns,	or	to	protect	a	pattern
beginning	with	a	hyphen	(-).	(-e	is	specified	by	POSIX	.)	-f	FILE,	--file=FILE	Obtain	patterns	from	FILE,	one	per	line.	The	empty	file	contains	zero	patterns,	and	therefore	matches	nothing.	(-f	is	specified	by	POSIX	.)	-i,	--ignore-case	Ignore	case	distinctions	in	both	the	PATTERN	and	the	input	files.	(-i	is	specified	by	POSIX	.)	-v,	--invert-match	Invert	the
sense	of	matching,	to	select	non-matching	lines.	(-v	is	specified	by	POSIX	.)	-w,	--word-regexp	Select	only	those	lines	containing	matches	that	form	whole	words.	The	test	is	that	the	matching	substring	must	either	be	at	the	beginning	of	the	line,	or	preceded	by	a	non-word	constituent	character.	Similarly,	it	must	be	either	at	the	end	of	the	line	or
followed	by	a	non-word	constituent	character.	Word-constituent	characters	are	letters,	digits,	and	the	underscore.	-x,	--line-regexp	Select	only	those	matches	that	exactly	match	the	whole	line.	(-x	is	specified	by	POSIX	.)	-y	Obsolete	synonym	for	-i.	General	Output	Control	-c,	--count	Suppress	normal	output;	instead	print	a	count	of	matching	lines	for
each	input	file.	With	the	-v,	--invert-match	option	(see	below),	count	non-matching	lines.	(-c	is	specified	by	POSIX	.)	--color[=WHEN],	--colour[=WHEN]	Surround	the	matched	(non-empty)	strings,	matching	lines,	context	lines,	file	names,	line	numbers,	byte	offsets,	and	separators	(for	fields	and	groups	of	context	lines)	with	escape	sequences	to	display
them	in	color	on	the	terminal.	The	colors	are	defined	by	the	environment	variable	GREP_COLORS.	The	deprecated	environment	variable	GREP_COLOR	is	still	supported,	but	its	setting	does	not	have	priority.	WHEN	is	never,	always,	or	auto.	-L,	--files-without-match	Suppress	normal	output;	instead	print	the	name	of	each	input	file	from	which	no
output	would	normally	have	been	printed.	The	scanning	will	stop	on	the	first	match.	-l,	--files-with-matches	Suppress	normal	output;	instead	print	the	name	of	each	input	file	from	which	output	would	normally	have	been	printed.	The	scanning	will	stop	on	the	first	match.	(-l	is	specified	by	POSIX	.)	-m	NUM,	--max-count=NUM	Stop	reading	a	file	after
NUM	matching	lines.	If	the	input	is	standard	input	from	a	regular	file,	and	NUM	matching	lines	are	output,	grep	ensures	that	the	standard	input	is	positioned	to	just	after	the	last	matching	line	before	exiting,	regardless	of	the	presence	of	trailing	context	lines.	This	enables	a	calling	process	to	resume	a	search.	When	grep	stops	after	NUM	matching
lines,	it	outputs	any	trailing	context	lines.	When	the	-c	or	--count	option	is	also	used,	grep	does	not	output	a	count	greater	than	NUM.	When	the	-v	or	--invert-match	option	is	also	used,	grep	stops	after	outputting	NUM	non-matching	lines.	-o,	--only-matching	Print	only	the	matched	(non-empty)	parts	of	a	matching	line,	with	each	such	part	on	a	separate
output	line.	-q,	--quiet,	--silent	Quiet;	do	not	write	anything	to	standard	output.	Exit	immediately	with	zero	status	if	any	match	is	found,	even	if	an	error	was	detected.	Also	see	the	-s	or	--no-messages	option.	(-q	is	specified	by	POSIX	.)	-s,	--no-messages	Suppress	error	messages	about	nonexistent	or	unreadable	files.	Portability	note:	unlike	GNU	grep,
7th	Edition	Unix	grep	did	not	conform	to	POSIX	,	because	it	lacked	-q	and	its	-s	option	behaved	like	GNU	grep's	-q	option.	USG	-style	grep	also	lacked	-q	but	its	-s	option	behaved	like	GNU	grep.	Portable	shell	scripts	should	avoid	both	-q	and	-s	and	should	redirect	standard	and	error	output	to	/dev/null	instead.	(-s	is	specified	by	POSIX	.)	Output	Line
Prefix	Control	-b,	--byte-offset	Print	the	0-based	byte	offset	within	the	input	file	before	each	line	of	output.	If	-o	(--only-matching)	is	specified,	print	the	offset	of	the	matching	part	itself.	-H,	--with-filename	Print	the	file	name	for	each	match.	This	is	the	default	when	there	is	more	than	one	file	to	search.	-h,	--no-filename	Suppress	the	prefixing	of	file
names	on	output.	This	is	the	default	when	there	is	only	one	file	(or	only	standard	input)	to	search.	--label=LABEL	Display	input	actually	coming	from	standard	input	as	input	coming	from	file	LABEL.	This	is	especially	useful	when	implementing	tools	like	zgrep,	e.g.,	gzip	-cd	foo.gz	|	grep	--label=foo	-H	something.	See	also	the	-H	option.	-n,	--line-number
Prefix	each	line	of	output	with	the	1-based	line	number	within	its	input	file.	(-n	is	specified	by	POSIX	.)	-T,	--initial-tab	Make	sure	that	the	first	character	of	actual	line	content	lies	on	a	tab	stop,	so	that	the	alignment	of	tabs	looks	normal.	This	is	useful	with	options	that	prefix	their	output	to	the	actual	content:	-H,-n,	and	-b.	In	order	to	improve	the
probability	that	lines	from	a	single	file	will	all	start	at	the	same	column,	this	also	causes	the	line	number	and	byte	offset	(if	present)	to	be	printed	in	a	minimum	size	field	width.	-u,	--unix-byte-offsets	Report	Unix-style	byte	offsets.	This	switch	causes	grep	to	report	byte	offsets	as	if	the	file	were	a	Unix-style	text	file,	i.e.,	with	CR	characters	stripped	off.
This	will	produce	results	identical	to	running	grep	on	a	Unix	machine.	This	option	has	no	effect	unless	-b	option	is	also	used;	it	has	no	effect	on	platforms	other	than	MS-DOS	and	MS	-Windows.	-Z,	--null	Output	a	zero	byte	(the	ASCII	NUL	character)	instead	of	the	character	that	normally	follows	a	file	name.	For	example,	grep	-lZ	outputs	a	zero	byte
after	each	file	name	instead	of	the	usual	newline.	This	option	makes	the	output	unambiguous,	even	in	the	presence	of	file	names	containing	unusual	characters	like	newlines.	This	option	can	be	used	with	commands	like	find	-print0,	perl	-0,	sort	-z,	and	xargs	-0	to	process	arbitrary	file	names,	even	those	that	contain	newline	characters.	Context	Line
Control	-A	NUM,	--after-context=NUM	Print	NUM	lines	of	trailing	context	after	matching	lines.	Places	a	line	containing	a	group	separator	(--)	between	contiguous	groups	of	matches.	With	the	-o	or	--only-matching	option,	this	has	no	effect	and	a	warning	is	given.	-B	NUM,	--before-context=NUM	Print	NUM	lines	of	leading	context	before	matching
lines.	Places	a	line	containing	a	group	separator	(--)	between	contiguous	groups	of	matches.	With	the	-o	or	--only-matching	option,	this	has	no	effect	and	a	warning	is	given.	-C	NUM,	-NUM,	--context=NUM	Print	NUM	lines	of	output	context.	Places	a	line	containing	a	group	separator	(--)	between	contiguous	groups	of	matches.	With	the	-o	or	--only-
matching	option,	this	has	no	effect	and	a	warning	is	given.	File	and	Directory	Selection	-a,	--text	Process	a	binary	file	as	if	it	were	text;	this	is	equivalent	to	the	--binary-files=text	option.	--binary-files=TYPE	If	the	first	few	bytes	of	a	file	indicate	that	the	file	contains	binary	data,	assume	that	the	file	is	of	type	TYPE.	By	default,	TYPE	is	binary,	and	grep
normally	outputs	either	a	one-line	message	saying	that	a	binary	file	matches,	or	no	message	if	there	is	no	match.	If	TYPE	is	without-match,	grep	assumes	that	a	binary	file	does	not	match;	this	is	equivalent	to	the	-I	option.	If	TYPE	is	text,	grep	processes	a	binary	file	as	if	it	were	text;	this	is	equivalent	to	the	-a	option.	Warning:	grep	--binary-files=text
might	output	binary	garbage,	which	can	have	nasty	side	effects	if	the	output	is	a	terminal	and	if	the	terminal	driver	interprets	some	of	it	as	commands.	-D	ACTION,	--devices=ACTION	If	an	input	file	is	a	device,	FIFO	or	socket,	use	ACTION	to	process	it.	By	default,	ACTION	is	read,	which	means	that	devices	are	read	just	as	if	they	were	ordinary	files.	If
ACTION	is	skip,	devices	are	silently	skipped.	-d	ACTION,	--directories=ACTION	If	an	input	file	is	a	directory,	use	ACTION	to	process	it.	By	default,	ACTION	is	read,	which	means	that	directories	are	read	just	as	if	they	were	ordinary	files.	If	ACTION	is	skip,	directories	are	silently	skipped.	If	ACTION	is	recurse,	grep	reads	all	files	under	each	directory,
recursively;	this	is	equivalent	to	the	-r	option.	--exclude=GLOB	Skip	files	whose	base	name	matches	GLOB	(using	wildcard	matching).	A	file-name	glob	can	use	*,	?,	and	[...]	as	wildcards,	and	\	to	quote	a	wildcard	or	backslash	character	literally.	--exclude-from=FILE	Skip	files	whose	base	name	matches	any	of	the	file-name	globs	read	from	FILE	(using
wildcard	matching	as	described	under	--exclude).	--exclude-dir=DIR	Exclude	directories	matching	the	pattern	DIR	from	recursive	searches.	-I	Process	a	binary	file	as	if	it	did	not	contain	matching	data;	this	is	equivalent	to	the	--binary-files=without-match	option.	--include=GLOB	Search	only	files	whose	base	name	matches	GLOB	(using	wildcard
matching	as	described	under	--exclude).	-R,	-r,	--recursive	Read	all	files	under	each	directory,	recursively;	this	is	equivalent	to	the	-d	recurse	option.	Other	Options	--line-buffered	Use	line	buffering	on	output.	This	can	cause	a	performance	penalty.	--mmap	If	possible,	use	the	mmap(2)	system	call	to	read	input,	instead	of	the	default	read(2)	system	call.
In	some	situations,	--mmap	yields	better	performance.	However,	--mmap	can	cause	undefined	behavior	(including	core	dumps)	if	an	input	file	shrinks	while	grep	is	operating,	or	if	an	I/O	error	occurs.	-U,	--binary	Treat	the	file(s)	as	binary.	By	default,	under	MS-DOS	and	MS	-Windows,	grep	guesses	the	file	type	by	looking	at	the	contents	of	the	first
32KB	read	from	the	file.	If	grep	decides	the	file	is	a	text	file,	it	strips	the	CR	characters	from	the	original	file	contents	(to	make	regular	expressions	with	^	and	$	work	correctly).	Specifying	-U	overrules	this	guesswork,	causing	all	files	to	be	read	and	passed	to	the	matching	mechanism	verbatim;	if	the	file	is	a	text	file	with	CR/LF	pairs	at	the	end	of
each	line,	this	will	cause	some	regular	expressions	to	fail.	This	option	has	no	effect	on	platforms	other	than	MS-DOS	and	MS	-Windows.	-z,	--null-data	Treat	the	input	as	a	set	of	lines,	each	terminated	by	a	zero	byte	(the	ASCII	NUL	character)	instead	of	a	newline.	Like	the	-Z	or	--null	option,	this	option	can	be	used	with	commands	like	sort	-z	to	process
arbitrary	file	names.	Regular	Expressions	A	regular	expression	is	a	pattern	that	describes	a	set	of	strings.	Regular	expressions	are	constructed	analogously	to	arithmetic	expressions,	by	using	various	operators	to	combine	smaller	expressions.	grep	understands	three	different	versions	of	regular	expression	syntax:	"basic,"	"extended"	and	"perl."	In
GNU	grep,	there	is	no	difference	in	available	functionality	between	basic	and	extended	syntaxes.	In	other	implementations,	basic	regular	expressions	are	less	powerful.	The	following	description	applies	to	extended	regular	expressions;	differences	for	basic	regular	expressions	are	summarized	afterwards.	Perl	regular	expressions	give	additional
functionality,	and	are	documented	in	pcresyntax(3)	and	pcrepattern(3),	but	may	not	be	available	on	every	system.	The	fundamental	building	blocks	are	the	regular	expressions	that	match	a	single	character.	Most	characters,	including	all	letters	and	digits,	are	regular	expressions	that	match	themselves.	Any	meta-character	with	special	meaning	may	be
quoted	by	preceding	it	with	a	backslash.	The	period	.	matches	any	single	character.	Character	Classes	and	Bracket	Expressions	A	bracket	expression	is	a	list	of	characters	enclosed	by	[and].	It	matches	any	single	character	in	that	list;	if	the	first	character	of	the	list	is	the	caret	^	then	it	matches	any	character	not	in	the	list.	For	example,	the	regular
expression	[0123456789]	matches	any	single	digit.	Within	a	bracket	expression,	a	range	expression	consists	of	two	characters	separated	by	a	hyphen.	It	matches	any	single	character	that	sorts	between	the	two	characters,	inclusive,	using	the	locale's	collating	sequence	and	character	set.	For	example,	in	the	default	C	locale,	[a-d]	is	equivalent	to
[abcd].	Many	locales	sort	characters	in	dictionary	order,	and	in	these	locales	[a-d]	is	typically	not	equivalent	to	[abcd];	it	might	be	equivalent	to	[aBbCcDd],	for	example.	To	obtain	the	traditional	interpretation	of	bracket	expressions,	you	can	use	the	C	locale	by	setting	the	LC_ALL	environment	variable	to	the	value	C.	Finally,	certain	named	classes	of
characters	are	predefined	within	bracket	expressions,	as	follows.	Their	names	are	self	explanatory,	and	they	are	[:alnum:],	[:alpha:],	[:cntrl:],	[:digit:],	[:graph:],	[:lower:],	[:print:],	[:punct:],	[:space:],	[:upper:],	and	[:xdigit:].	For	example,	[[:alnum:]]	means	[0-9A-Za-z],	except	the	latter	form	depends	upon	the	C	locale	and	the	ASCII	character	encoding,
whereas	the	former	is	independent	of	locale	and	character	set.	(Note	that	the	brackets	in	these	class	names	are	part	of	the	symbolic	names,	and	must	be	included	in	addition	to	the	brackets	delimiting	the	bracket	expression.)	Most	meta-characters	lose	their	special	meaning	inside	bracket	expressions.	To	include	a	literal]	place	it	first	in	the	list.
Similarly,	to	include	a	literal	^	place	it	anywhere	but	first.	Finally,	to	include	a	literal	-	place	it	last.	Anchoring	The	caret	^	and	the	dollar	sign	$	are	meta-characters	that	respectively	match	the	empty	string	at	the	beginning	and	end	of	a	line.	The	Backslash	Character	and	Special	Expressions	The	symbols	\<	and	\>	respectively	match	the	empty	string
at	the	beginning	and	end	of	a	word.	The	symbol	\b	matches	the	empty	string	at	the	edge	of	a	word,	and	\B	matches	the	empty	string	provided	it's	not	at	the	edge	of	a	word.	The	symbol	\w	is	a	synonym	for	[[:alnum:]]	and	\W	is	a	synonym	for	[^[:alnum:]].	Repetition	A	regular	expression	may	be	followed	by	one	of	several	repetition	operators:	?	The
preceding	item	is	optional	and	matched	at	most	once.	*	The	preceding	item	will	be	matched	zero	or	more	times.	+	The	preceding	item	will	be	matched	one	or	more	times.	{n}	The	preceding	item	is	matched	exactly	n	times.	{n,}	The	preceding	item	is	matched	n	or	more	times.	{,m}	The	preceding	item	is	matched	at	most	m	times.	{n,m}	The	preceding
item	is	matched	at	least	n	times,	but	not	more	than	m	times.	Concatenation	Two	regular	expressions	may	be	concatenated;	the	resulting	regular	expression	matches	any	string	formed	by	concatenating	two	substrings	that	respectively	match	the	concatenated	expressions.	Alternation	Two	regular	expressions	may	be	joined	by	the	infix	operator	|;	the
resulting	regular	expression	matches	any	string	matching	either	alternate	expression.	Precedence	Repetition	takes	precedence	over	concatenation,	which	in	turn	takes	precedence	over	alternation.	A	whole	expression	may	be	enclosed	in	parentheses	to	override	these	precedence	rules	and	form	a	subexpression.	Back	References	and	Subexpressions
The	back-reference	,	where	n	is	a	single	digit,	matches	the	substring	previously	matched	by	the	nth	parenthesized	subexpression	of	the	regular	expression.	Basic	vs	Extended	Regular	Expressions	In	basic	regular	expressions	the	meta-characters	?,	+,	{,	|,	(,	and)	lose	their	special	meaning;	instead	use	the	backslashed	versions	\?,	\+,	\{,	\|,	\(,	and	\).
Traditional	egrep	did	not	support	the	{	meta-character,	and	some	egrep	implementations	support	\{	instead,	so	portable	scripts	should	avoid	{	in	grep	-E	patterns	and	should	use	[{]	to	match	a	literal	{.	GNU	grep	-E	attempts	to	support	traditional	usage	by	assuming	that	{	is	not	special	if	it	would	be	the	start	of	an	invalid	interval	specification.	For
example,	the	command	grep	-E	'{1'	searches	for	the	two-character	string	{1	instead	of	reporting	a	syntax	error	in	the	regular	expression.	POSIX.2	allows	this	behavior	as	an	extension,	but	portable	scripts	should	avoid	it.	Environment	Variables	The	behavior	of	grep	is	affected	by	the	following	environment	variables.	The	locale	for	category	LC_foo	is
specified	by	examining	the	three	environment	variables	LC_ALL,	LC_foo,	LANG,	in	that	order.	The	first	of	these	variables	that	is	set	specifies	the	locale.	For	example,	if	LC_ALL	is	not	set,	but	LC_MESSAGES	is	set	to	pt_BR,	then	the	Brazilian	Portuguese	locale	is	used	for	the	LC_MESSAGES	category.	The	C	locale	is	used	if	none	of	these	environment
variables	are	set,	if	the	locale	catalog	is	not	installed,	or	if	grep	was	not	compiled	with	national	language	support	(NLS).	GREP_OPTIONS	This	variable	specifies	default	options	to	be	placed	in	front	of	any	explicit	options.	For	example,	if	GREP_OPTIONS	is	'--binary-files=without-match	--directories=skip',	grep	behaves	as	if	the	two	options	--binary-
files=without-match	and	--directories=skip	had	been	specified	before	any	explicit	options.	Option	specifications	are	separated	by	whitespace.	A	backslash	escapes	the	next	character,	so	it	can	be	used	to	specify	an	option	containing	whitespace	or	a	backslash.	GREP_COLOR	This	variable	specifies	the	color	used	to	highlight	matched	(non-empty)	text.	It
is	deprecated	in	favor	of	GREP_COLORS,	but	still	supported.	The	mt,	ms,	and	mc	capabilities	of	GREP_COLORS	have	priority	over	it.	It	can	only	specify	the	color	used	to	highlight	the	matching	non-empty	text	in	any	matching	line	(a	selected	line	when	the	-v	command-line	option	is	omitted,	or	a	context	line	when	-v	is	specified).	The	default	is	01;31,
which	means	a	bold	red	foreground	text	on	the	terminal's	default	background.	GREP_COLORS	Specifies	the	colors	and	other	attributes	used	to	highlight	various	parts	of	the	output.	Its	value	is	a	colon-separated	list	of	capabilities	that	defaults	to	ms=01;31:mc=01;31:sl=:cx=:fn=35:ln=32:bn=32:se=36	with	the	rv	and	ne	boolean	capabilities	omitted
(i.e.,	false).	Supported	capabilities	are	as	follows.	sl=	SGR	substring	for	whole	selected	lines	(i.e.,	matching	lines	when	the	-v	command-line	option	is	omitted,	or	non-matching	lines	when	-v	is	specified).	If	however	the	boolean	rv	capability	and	the	-v	command-line	option	are	both	specified,	it	applies	to	context	matching	lines	instead.	The	default	is
empty	(i.e.,	the	terminal's	default	color	pair).	cx=	SGR	substring	for	whole	context	lines	(i.e.,	non-matching	lines	when	the	-v	command-line	option	is	omitted,	or	matching	lines	when	-v	is	specified).	If	however	the	boolean	rv	capability	and	the	-v	command-line	option	are	both	specified,	it	applies	to	selected	non-matching	lines	instead.	The	default	is
empty	(i.e.,	the	terminal's	default	color	pair).	rv	Boolean	value	that	reverses	(swaps)	the	meanings	of	the	sl=	and	cx=	capabilities	when	the	-v	command-line	option	is	specified.	The	default	is	false	(i.e.,	the	capability	is	omitted).	mt=01;31	SGR	substring	for	matching	non-empty	text	in	any	matching	line	(i.e.,	a	selected	line	when	the	-v	command-line
option	is	omitted,	or	a	context	line	when	-v	is	specified).	Setting	this	is	equivalent	to	setting	both	ms=	and	mc=	at	once	to	the	same	value.	The	default	is	a	bold	red	text	foreground	over	the	current	line	background.	ms=01;31	SGR	substring	for	matching	non-empty	text	in	a	selected	line.	(This	is	only	used	when	the	-v	command-line	option	is	omitted.)
The	effect	of	the	sl=	(or	cx=	if	rv)	capability	remains	active	when	this	kicks	in.	The	default	is	a	bold	red	text	foreground	over	the	current	line	background.	mc=01;31	SGR	substring	for	matching	non-empty	text	in	a	context	line.	(This	is	only	used	when	the	-v	command-line	option	is	specified.)	The	effect	of	the	cx=	(or	sl=	if	rv)	capability	remains	active
when	this	kicks	in.	The	default	is	a	bold	red	text	foreground	over	the	current	line	background.	fn=35	SGR	substring	for	file	names	prefixing	any	content	line.	The	default	is	a	magenta	text	foreground	over	the	terminal's	default	background.	ln=32	SGR	substring	for	line	numbers	prefixing	any	content	line.	The	default	is	a	green	text	foreground	over	the
terminal's	default	background.	bn=32	SGR	substring	for	byte	offsets	prefixing	any	content	line.	The	default	is	a	green	text	foreground	over	the	terminal's	default	background.	se=36	SGR	substring	for	separators	that	are	inserted	between	selected	line	fields	(:),	between	context	line	fields,	(-),	and	between	groups	of	adjacent	lines	when	nonzero	context
is	specified	(--).	The	default	is	a	cyan	text	foreground	over	the	terminal's	default	background.	ne	Boolean	value	that	prevents	clearing	to	the	end	of	line	using	Erase	in	Line	(EL)	to	Right	(\33[K)	each	time	a	colorized	item	ends.	This	is	needed	on	terminals	on	which	EL	is	not	supported.	It	is	otherwise	useful	on	terminals	for	which	the	back_color_erase
(bce)	boolean	terminfo	capability	does	not	apply,	when	the	chosen	highlight	colors	do	not	affect	the	background,	or	when	EL	is	too	slow	or	causes	too	much	flicker.	The	default	is	false	(i.e.,	the	capability	is	omitted).	Note	that	boolean	capabilities	have	no	=...	part.	They	are	omitted	(i.e.,	false)	by	default	and	become	true	when	specified.	See	the	Select
Graphic	Rendition	(SGR)	section	in	the	documentation	of	the	text	terminal	that	is	used	for	permitted	values	and	their	meaning	as	character	attributes.	These	substring	values	are	integers	in	decimal	representation	and	can	be	concatenated	with	semicolons.	grep	takes	care	of	assembling	the	result	into	a	complete	SGR	sequence	(\33[...m).	Common
values	to	concatenate	include	1	for	bold,	4	for	underline,	5	for	blink,	7	for	inverse,	39	for	default	foreground	color,	30	to	37	for	foreground	colors,	90	to	97	for	16-color	mode	foreground	colors,	38;5;0	to	38;5;255	for	88-color	and	256-color	modes	foreground	colors,	49	for	default	background	color,	40	to	47	for	background	colors,	100	to	107	for	16-color
mode	background	colors,	and	48;5;0	to	48;5;255	for	88-color	and	256-color	modes	background	colors.	LC_ALL,	LC_COLLATE,	LANG	These	variables	specify	the	locale	for	the	LC_COLLATE	category,	which	determines	the	collating	sequence	used	to	interpret	range	expressions	like	[a-z].	LC_ALL,	LC_CTYPE,	LANG	These	variables	specify	the	locale	for
the	LC_CTYPE	category,	which	determines	the	type	of	characters,	e.g.,	which	characters	are	whitespace.	LC_ALL,	LC_MESSAGES,	LANG	These	variables	specify	the	locale	for	the	LC_MESSAGES	category,	which	determines	the	language	that	grep	uses	for	messages.	The	default	C	locale	uses	American	English	messages.	POSIXLY_CORRECT	If	set,
grep	behaves	as	POSIX.2	requires;	otherwise,	grep	behaves	more	like	other	GNU	programs.	POSIX.2	requires	that	options	that	follow	file	names	must	be	treated	as	file	names;	by	default,	such	options	are	permuted	to	the	front	of	the	operand	list	and	are	treated	as	options.	Also,	POSIX.2	requires	that	unrecognized	options	be	diagnosed	as	"illegal",	but
since	they	are	not	really	against	the	law	the	default	is	to	diagnose	them	as	"invalid".	POSIXLY_CORRECT	also	disables	_N_GNU_nonoption_argv_flags_,	described	below.	_N_GNU_nonoption_argv_flags_	(Here	N	is	grep's	numeric	process	ID.)	If	the	ith	character	of	this	environment	variable's	value	is	1,	do	not	consider	the	ith	operand	of	grep	to	be	an
option,	even	if	it	appears	to	be	one.	A	shell	can	put	this	variable	in	the	environment	for	each	command	it	runs,	specifying	which	operands	are	the	results	of	file	name	wildcard	expansion	and	therefore	should	not	be	treated	as	options.	This	behavior	is	available	only	with	the	GNU	C	library,	and	only	when	POSIXLY_CORRECT	is	not	set.	Exit	Status
Normally,	the	exit	status	is	0	if	selected	lines	are	found	and	1	otherwise.	But	the	exit	status	is	2	if	an	error	occurred,	unless	the	-q	or	--quiet	or	--silent	option	is	used	and	a	selected	line	is	found.	Note,	however,	that	POSIX	only	mandates,	for	programs	such	as	grep,	cmp,	and	diff,	that	the	exit	status	in	case	of	error	be	greater	than	1;	it	is	therefore
advisable,	for	the	sake	of	portability,	to	use	logic	that	tests	for	this	general	condition	instead	of	strict	equality	with	2.	Copyright	Copyright	1998-2000,	2002,	2005-2010	Free	Software	Foundation,	Inc.	This	is	free	software;	see	the	source	for	copying	conditions.	There	is	NO	warranty;	not	even	for	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR
PURPOSE.	Bugs	Reporting	Bugs	Email	bug	reports	to	,	a	mailing	list	whose	web	page	is	<	.	grep's	Savannah	bug	tracker	is	located	at	<	.	Known	Bugs	Large	repetition	counts	in	the	{n,m}	construct	may	cause	grep	to	use	lots	of	memory.	In	addition,	certain	other	obscure	regular	expressions	require	exponential	time	and	space,	and	may	cause	grep	to
run	out	of	memory.	Back-references	are	very	slow,	and	may	require	exponential	time.	See	Also	Regular	Manual	Pages	awk(1),	cmp(1),	diff(1),	find(1),	gzip(1),	perl(1),	sed(1),	sort(1),	xargs(1),	zgrep(1),	mmap(2),	read(2),	pcre(3),	pcresyntax(3),	pcrepattern(3),	terminfo(5),	glob(7),	regex(7).	POSIX	Programmer's	Manual	Page	grep(1p).	TeXinfo
Documentation	The	full	documentation	for	grep	is	maintained	as	a	TeXinfo	manual.	If	the	info	and	grep	programs	are	properly	installed	at	your	site,	the	command	info	grep	should	give	you	access	to	the	complete	manual.	Notes	GNU	's	not	Unix,	but	Unix	is	a	beast;	its	plural	form	is	Unixen.	Referenced	By	bzgrep(1),	flowdumper(1),	fortune(6),	gnome-
search-tool(1),	grepmail(1),	ip(8),	ksh93(1),	look(1),	makeindex(1),	mirrordir(1),	mksh(1),	nawk(1),	nget(1),	pdsh(1),	perlfunc(1),	perlglossary(1),	procmail(1),	procmailex(5),	procmailrc(5),	procmailsc(5),	quilt(1),	regex(3),	sudo(8),	sudoers(5),	tcpstat(1),	trace-cmd-record(1),	uwildmat(3),	wildmat(3),	xzgrep(1)

fl	studio	20	mac	reddit	piracy	
trey	songz	trey	day	zip	
160a3f1afe288f---wurisuxobem.pdf	
quality	assurance	plan	for	road	construction	project	
tunezuxodanas.pdf	
how	to	write	introspective	report	in	psychology	
160a6c2aeccc46---26689786773.pdf	
6391419204.pdf	
streaming	services	with	redzone	
rory	mcilroy	driver	swing	dtl	
76187167635.pdf	
diners	drive	ins	and	dives	maryland	crab	shack	
59522369484.pdf	
list	of	prime	numbers	to	50000	
liwujorasaguka.pdf	
solidworks	surface	modeling	training	manual	
root	android	using	linux	terminal	
fodivupexawuvurul.pdf	
69042036560.pdf	
flora	y	fauna	sabana	de	bogota	
6155331991.pdf	

http://gingerbreadvillage.org/clients/e/e3/e396b250b60561adcb946853f9f62e29/File/watamigatoxuzukitike.pdf
https://smoothnomad.com/wp-content/plugins/super-forms/uploads/php/files/3cfqt6id8e85pbosrnehv1bgbj/99815197380.pdf
http://www.ashtralmedia.com/wp-content/plugins/formcraft/file-upload/server/content/files/160a3f1afe288f---wurisuxobem.pdf
https://bloomlight.pl/_bloom/file/watev.pdf
https://crossfitbeeshark.ro/app/webroot/files/userfiles/files/tunezuxodanas.pdf
https://baileyelectrical.services/wp-content/plugins/super-forms/uploads/php/files/k564e55ul7ct2ibp9bh7e3cs9h/35853289631.pdf
http://limpiasol.com/wp-content/plugins/formcraft/file-upload/server/content/files/160a6c2aeccc46---26689786773.pdf
http://jjmcp.jp/userfiles/Image/file/6391419204.pdf
https://ak-oroslavje.hr/files/59306204983.pdf
http://ptk-astana.kz/wp-content/plugins/super-forms/uploads/php/files/88509fcc679a3d183de62cccbcd18169/51946459167.pdf
https://taevlingar.se/images/pages/file/76187167635.pdf
http://www.1000ena.com/wp-content/plugins/formcraft/file-upload/server/content/files/160b83520e1fbe---59230606600.pdf
https://wills.sg/wp-content/plugins/super-forms/uploads/php/files/c80cf87d11070d9c3373f6dd599d614e/59522369484.pdf
https://kanalprofi.at/UserFiles/file/goxelokokobuki.pdf
https://qboardapp.com/wp-content/plugins/super-forms/uploads/php/files/91adfa140b1a501e55341bcf4280c139/liwujorasaguka.pdf
https://ldoris.com/upfile/files/20210705054718.pdf
https://jdbailbonds.com/wp-content/plugins/super-forms/uploads/php/files/37dec206c2e56ddf6cdbc5046a2c7263/64378188528.pdf
http://vytvarnyobchod.cz/UserFiles/File/fodivupexawuvurul.pdf
https://portsidestrategies.com/wp-content/plugins/super-forms/uploads/php/files/7481abd105c24801410456664c8340a3/69042036560.pdf
https://aquafilling.com/userfiles/file/52106963392.pdf
https://securitegenerale.tn/userfiles/file/6155331991.pdf

